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Abstract.

Any n-vertex planar graph has the property that it can be divided

int o component s of roughly equal size by removing only vert ice s•

This separator theorem, in combination with a divide-and-conquer

strate ~ r, leads to many new complexity result s for planar graph

problems. This paper describes some of these results.
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1. Introduction.

One efficient approach to solving computational problems is

“divide-and-conquer” [1 ] .  In this method, the original problem is

divided into two or more smaller problems . The subproblems are solved

by applying the method recursively, and. the solutions to the subproblems

are combined to give the solution to the original problem. Divide- and-

conquer is especially efficient when the subproblems are substantially

smaller than the original problem.

In [ll~) the following theorem is proved.

Theorem 1. Let G be any n-vertex planar graph with non-negative

vertex costs summing to no more than one. Then the vertices of G can

be part it ioned into three sets A , B , C , such that no edge joins a

vertex in A with a vertex in B , neither A nor B has total vertex

• cost exceeding 2/3 , and C contains no more than 2~f ~~f ~ vertices.

Furthermore A, B , C can be found in 0(n) time.

In the special case of equal-cost vertices, this theorem become s

Corollary 1. Let G be any n-vertex planar graph . The vertices of G

can be partitioned into three sets A, B , C , such that no edge joins a

vertex In A with a vertex in B , neither A nor B contains more

than 2n/3 vertices, and C contains no more than 242~/ vertices.

Theorem 1 and its corollary open the way for efficient application

of divide-and-conquer to a variety of prob lems on planar graphs. In this

paper we explore a number of such applications. Each section of the

paper describes a different use of divIde-and-conc~u.er. The result s range

2
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from an efficient approximation algorithm for finding maximum independent

• 
sets in planar graphs to lower bounds on the complexity of planar

Boolean circuits. The last section mentions two additional applications

whose description is too lengthy to be included in this paper.

3
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~ . Approximation Algori thms for NP-Complete Problems.

Divide-arid-con quer in combination with Theorem 1 can be used to

rapidly find good approximate solutions to certain NP-complete prob lems on

planar graphs. As an example we consider the maximum independent set

problem, which asks for a maximum number of pairwise non-adjacent

vertices in a planar graph .

Theorem 2. Let G be an n-vertex planar graph with non-negative vertex

costs summing to no more than one ari d let 0 < € < 1 • Then there is somc

set C of o(’J~7’) vertices whose removal leaves G with no connected

component of cost exceeding € • Furthermore the set C can be foun d

in 0(n log n)  time.

I roof. ApT ly the following algorithm to G

Initialization: Let C = 0

General Step: Find some connected component K in G minus C with

cost exceeding € . Apply Corollary 1 to K , producing a partition

A1, B1, C1 of Its vertices. Let C = C U C 1 
. If one of A1 and B1

(say 
~~ 

) has cost exceeding two-thirds the cost of K , apply

Theorem 1 to the subgraph of G induced by the vertex set A1

producing a partition A2 ,  B2 ,  C2 of A1 • Let C = C U C2

Repeat the general step until G minus C has no component with

cost exceeding €

The et’rect of one execution of the general step is to divide the

coTn1onent K Into smaller components, each with no more than two-thirds

the cost of K and each with no more than two-th irds as many ver L i~ e~

‘I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i: ~~~~~~~ .~~~~_



as K . Consider all components which arise during the course of the

algorithm. Assi~~ a level to each component as follows. If the

component exists when the algoritth halts, the component has level zero.

Otherwise the level of the component is one greater than the maximum

level of the components formed when it is split by the general step.

With this def inition, any two components on the same level are

vertex-disjoint.

Each level one component has cost greater than € , since it is

eventuafly split by the general step. It follows that, for i 1 ,

each level i component has cost at least (3/2)~~
1€ and contains

at least (3/2)
1 vertices. Since the total cost of G is at most one,

the total number of components of level I is at most (2/3)~~
l
/ €

The total runnIng time of the algorithm is o(~ (IK ~ 
K is a component

split by the general step)) . Since a component of level i contains

at least (3/2)’ vertices, the maximum level k must satisfy

(3/2)
k < n , or k < log

312 
n . Since components in each level are

• vertex-disjoint, the total running time of the algorithm is

O(n log
312 

i-i ) = O(n log n)

The total size of the set C produced by the algorithm is bounded by

o(2~ (~J ~KI K is a component split by the general step))

(Llog3/2 nj 
fL (2/3 )~~~/€ J  L (2/3 )’~~/€ J• < 0( E max(~ n~ < n  and n,~ 

-
~ o)

1= 1 j = l  j = l  J
< ~ (2/3)’~~ 1’ = o(~/7 ~ (2/3)

i/2)
€ 

~ (2/3 ) ) i=o )

= o(~1~7~) . 0

5
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The following algorithm uses Theorem 2 to find an approximately

maximum independent set I in a planar graph G = (v,E)

Step 1. Apply Theorem 2 to G with € = (log log n)/n and each vertex

having cost 1/n to find a set of vertices C containing

o(n/~~iog log n) vertices whose removal leaves no

connected component with more than log log n vertices.

Step 2. In each connected component of G minus C , find a maximum

independent set by checking every subset of vertices for

independence. Form I as a uni on of maximum independent sets,

one from each component.

Let 1* be a maximum independent set of G . The restriction of

1* to one of the connected components formed when C is removed

from G can be no larger than the restriction of I to the same

component. Thus 11*1 - ~~ = o(n/~~log log n) . Since G is planar,

G is four-colorable, and ~I*~ > n/14 . Thus (11*1_ Ill ) / 11*1 =

0(1 /‘~Ji~g log n), and, the relative error in the size of I tends to

zero with increasing n

• Step 1 of the algorithm requires 0(n log n) time by Theorem 2.

Step 2 requires 0(n. 2
1
) time on a connected component of vertices.

The total time required by Step 2 is thus

o(max { L 
~ 

2 ’ L n~ = n and 0 < n
1 
< log log n =

o(iog ~og ~ 
(log log ~ )2 lo~ log 

n )  = O(n log n) . Hence the entire 
•

algorithm requires 0(n log n) t ime . •

(I
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3. Nonserial Dynamic Programming .

Many NP-complete problems, such as the maximum independent set

problem, the graph coloring problem, and others, can be formulated as

nonserial dynamic programming problems [ 2 , 201 . Such a problem is

of the following form : minimize the objective function f(x 1,..., x~ ) ,

where f is given as a sum of terms 
~~~~ 

, each of which is a function

of only a subset of the variables. We shall assume that all variables

take on values from the same finite set S , and that the values

of the terms 
~~~~~ 

are given by tables. Associated with such an

objective function f is an interaction graph G = (v,E) , containing

one vertex v1 for each variable x~ in f , and an edge joining x
1

and x~ for any two variables x1 and X
j 

which appear in a common

term 
~~~~~

By trying all possible values of the variables, a nonserial

0(n)dynamic programming problem can be solved in 2 time. We shall

show that if the interaction graph of the problem is planar, the

problem can be solved in 2°~~’~~ time. This means that substantial

savings are possible when solving typical NP-complete problems restricted

to planar graphs. Note that if the interaction graph of f is planar,

no term of f can contain more than four variables, since the

complete graph on five vertices is not planar.

In order to describe the algorithm, we need one additional concept.
m

The restriction of an objective function ~ = 
~ 

to a set of
k= 1

variables x1 , . . . , x1 is the objective function
1 j

= E t f k l f k depends upon one or more of x1 ~~~~~~~ 3 .
1 j 

~~~~~~~~~~~~~ • ~~~~~~~~~~~~ ~~~~~~~
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Given an objective function f(x 1, .. .,x~ ) = E 
~
‘k and a

k = 1
subset S of the variables x1,...,x~ which are constrained to have

specific values, the following algorithm solves the problem :

maximize f subject to the constraints on the variables in S

In the presentation, we do not distinguish between the variables

Xl~ •••~
Xn and the corresponding vertices in the interaction graph.

Step 1. If n < 9 , solve the problem by exhaustively trying all

possible assignments to the unconstrained variables.

Otherwise, go to Step 2.

Step 2. Apply Corollary 1 to the interaction graph G of f . Let

A,  B, C be the resulting vertex partition. Let f1 b-

the restriction of f to ALI C and let f2 be the

restriction of f to BUC . For each possible assignment

of values to thc variables in C-S , perform the following

steps:

(a) Maximize f1 with the given values for the variables

in C~~S by applying the method recursively;

(b) Maximize f2 with the given values for the variables

in C IJS by applying the method recursively;

(c) Combine the solutions to (a) and (b) to obtain a maximum

value of f with the given values for the variables

in C U S .

Choose the assignment of values to variables in C-S which

maximizes f and return the apjropriate value of f a~-

the solution.

8
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The correctness ‘-i’ this algorithm is obvi ous . If ri > 9 , the

algorithm solves at most 20
~~”~~ subproblems in Step 2, since C

is of o(~j~~) size. Each subproblem contains at most

2n/3 + 2~/ ~~J ~ < 29n/30 variables. Thus if t(n) is the running

time of the algorithm, we have t(n) < O(n log n) + 20~~
/
~~ . t(29n/30)

if n > 9 , t(n)  ~ 0(1) if n < 9 An inductive proof shows

that t~n) < 2 °~~~~~

9 
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14• Pebbling.

The following one-person game arises in register allocation

problems [21), the conversion of recursion to iteration [161, and

the study of time-space tradeoffs [14 ,10,18]. Let G = (v,s) be

a directed acyclic graph with maximum in-degree k . If (v,w’
~ is

an edge of G , v is a predecessor of w and w is a

successor of v . The game involves placing pebbles on the vertices

of G according to certain rules. A given step of the game consists

of either placing a pebble on an empty vertex of G (called pebbling

the vertex) or removing a pebble from a previously pebbled vertex.

A vertex may be pebbled ~~~~ if all its predecessors have pebbles.

The object of the game is to successively pebble each vertex of G

(in any order) subject to the constraint that at most a given number

of pebbles are ever on the graph simultaneously.

It is easy to pebble any vertex of an n-vertex graph in n steps

using n pebbles. We are interested in pebbling methods which u~e

fewer than n pebbles but possibly many more than n steps. It is

known that any vertex of an n-vertex graph can be pebbled with

O(n/log n) pebbles [10] (where the constant depends upon the maximum

in-degree), and that in general no better bound is possible [18]. We

shall show that if the graph is planar, only o(”f ~ ) pebbles are

necessary, generalizing a result of [18]. An example of Cook [ I~~]

shows that no better bound is possible for planar graphs.

Theorem 3. Any n-vertex planar acyclic directed graph with maximum

in-degree k can be pebbled using o(’J~ + k log
2 
n) pebbles.

10
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Proof. Let a = 2v~ and ~ = 2/3 . Let G be the graph to be

pebbled. Use the following recursive pebbling procedure. If n < n
0 ,

where n0 = (cx/(l-~ ) ) 2 
, pebble all vertices of G without deleting

pebbles. If n > n0 , find a vertex partition A , B, C satisfying
*/Corollary 1. Peeble the vertices of G in topological order.—’

To pebble a vertex v , delete all pebbles except those on C • For

each predecessor u of v , let G(u) be the subgraph of G induced

by the set of vertices with pebble-free paths to u . Apply the method

• recursively to each G(u) to pebble all predecessors of v , leaving

• a pebble on each such predecessor. Then pebble v •

If p(n) is the maximum number of pebbles required by this method

on any n-vertex graph, then

p (n )=n if n < n 0 ,

p(n) < + k + p(2n/3 + a”J~~) if n > n0

An inductive proof shows that p(n) is o(J ÷k log2 n) .

It is also possible to obtain a substantial reduction in pebbles

while preserving a polynomial bound on the number of pebbling steps,

as the following theorem shows.

Theorem 1~• Any n-vertex planar acyclic directed graph with maximum

in-degree k can be pebbled using O(n2/3+k) pebbles in O(1m~”~) time.

*1—‘ That is, in an order such that if v is a predecessor of w ,
v Is pebbled before w

11



1-roof. Let C be a set of 0(n2/3 ) vertices whose removal leaves

*1 2/3G with no weakly connected component -.’ containing more than ~

vertices. Such a set C exists by Theorem 2. The following pebbling

procedure places pebbles permanently on the vertices of C . Pebble

the vertices of G in topological order. To pebble a vertex v

pebble each predecessor u of v and then pebble v . To pebble a

predecessor u , delete all pebbles from G except those on vertices

in C or on predecessors of v • Find the weakly connected component

in G minus C containing u . Pebble all vertices in this component,

in topological order.

The total number of pebbles required by this strategy is O(n
2/~~)

to ~ebb1e vertices in c plus n
2
~
l’3 to pebble each weakly connected

component plus k to pebble predecessors of the vertex v to be

pebbled. The total number of pebbling steps is at most

O(k.n.n
2h’3) = O(kn~”~ ) • 0

*1
—‘ A weakly connected component of a directed graph is a connected

component of the undirected graph formed by ignoring edge directions.

12
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5. Lower Bounds on Boolean Circuit Size.

A Boolean circuit is an acyclic directed graph such that each

vertex has in-degree zero or two, the predecessors of each vertex are

• ordered, and corresponding to each vertex v of in-degree two Is a

binary Boolean operation by With each vertex of the circuit we

associate a Boolean function which the vertex computes, defined as

• follows. With each of the k vertices v
~ 

of in-degree zero (Inputs)

• we associate a variable x~ and an identity function f ( x 1) = x.

With each vertex w of in-degree two having predecessors u , v we

associate the function f
~ 

= b
~
(f
~
,f
~
) • The circuit computes the

set of functions associated with its vertices of out-degree zero

(outputs).

We are interested in obtaining lower bounds on the size (nuniber

of vertices) of Boolean circuits which compute certain common and

• important functions. Using Theorem 1 we can obtain such lower bounds

under the assumption that the circuits are planar. Any circuit can be

converted into a planar circuit by the following steps. First , embed

the circuit in the plane, allowing edges to cross if’ necessary. Next ,

replace each pair of crossing edges by the crossover circuit illustrated.

in Figure 1. It follows that any lower bound on the size of planar

circuits is also a lower bound on the total number of vertices and

edge crossings in any planar representation of a non-planar circuit.

In a technology for which the total number of vertices and edge

crossings is a reasonable measure of cost , our lower bounds imply that

it may be expensive to realize certain conm~on1y used functions in

hardware.

13
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A superconcentrator is an acyclic directed graph with m inputs

and m outputs such that any set of k inputs and any set of k

outputs are joined by k vertex-disjoint paths, for all k in the

range 1 < k < m .

Theorem 5. Any rn-input, m-output planar superconcentrator contains

2
at least m /72 vertices.

Proof. Let G be an rn-input, rn-output planar superconcentrator.

Assign to each input and output of G a cost of 1/(2n1) , and. to every

other vertex a cost of zero. Let A , B , C be a vertex partition

satisfying Theorem 1 on G (ignoring edge directions). Suppose C

contains p inputs and outputs. Without loss of generality, suppose

that A is no more costly than B , and that A contains no more

outputs than inputs. A contains between 2in/3 - p and m - p/2

inputs and outputs. Hence A contains at least m/3 - p/2 inputs

and. at :iiost m/2 - p/l4 outputs. B contains at least m - p - (rn/2 - p/n) =

m/2 - 3p/14 outputs. Let k = niin [Ini/3 - p/2l, [m/2 - 3p/l41) . Since

G is a superconcentrator, any set of k Input s in A and any set of

k outputs in B are joined by k vertex-disjoint paths. Each such

path must contain a vertex in C which is neither an input nor an

output. Thus - p > min fm/3 - p/2 , m/2 - 3p/l4) > rn/3 - p

and n > r n2/72 • 0

The property of being a superconcentrator is a little too strong

to be useful in deriving lower bounds on the complexity of’ interesting

functions . However, there are weaker properties which still require

c~(m2 ) vertices. Let G = (V,E) be an acyclic directed graph with m

114



numbered input s v1, v2, .. ~ 
V
m 

and m numbered outputs w1, w2, . . Wm
G is said to have the shifting property if , for any k in the range

1 < k < m , any I in the range 0 < 1 < rn-k , and. any subset of k

sources fv1 ,..., v1 3 such that il, i2,. . . ,ik < m _ I , there are k
1 k

vertex-disjoint paths joining the set of inputs [V
1 

,.. ., v1 3 with

the set of outputs [v. 41,...,v. 41) 
1 k

Theorem 6. Let G be a planar acyclic directed graph with the

sh.ifting property. Then G contains at least Lm/2J
2
/162 vertices.

Proof. Suppose that G contains n vertices. Assign a cost of 1/m

to each of the first Lm/2J inputs and to each of the last Lm/2J

outputs of G , and a cost of zero to every other vertex of G . Call

the first Lm/2J inputs and the last Lrn/2J outputs of G costly.

Let A, B, C be a vertex partition satisfying Theorem 1 on G

(ignoring edge directions).

Without loss of generality, suppose that A is no more costly

than B , and that A contains no more costly output s than costly

inputs. Let A’ be the set of costly inputs in A , B’ the set of

costly outputs in B , p the number of costly inputs and outputs

in C , and q the number of costly inputs and outputs in A . Then

2 Lm/2J /3 - P ~ q ~ Lm/2J - p/2 • Hence ~A’ 
~ 

qJ2 � Lm/2 J /3 - p/2

A.lso

15



~A’ . IB’ I ~ IA’ I.(L m/2J - p - (q- IA ’ I ) )

> ~~2. (Lm/2J - p - ~~2)

2 (L m/2J/3 - p/2)(Lm/2J - p - Lm/2J/3 + p/2)

= (Lm/2J/3 - p/2)(2Lm/2j/3 - p/2)

> 2~~rn/2 J
2
/q - pLm/2J /2

For € A’ , w~ € B’ , and. i in the range 1 < 1 < Lm/2J ~

call , w. , £ a match if ~j-i = . For every v1 € A’ and.

w
,~ 

€ B’ there is exactly one value of’ 2 which produces a match;

hence the total number of matches for all possible v1 , w,~ I is

IA’ I .IB’ l ~ 2~ m/2J
2
/q - plm/2J /2 . Since there are only Lm/2J

values of 2 , some value of I produces at least 2~ m/2J /q - p/2

matches. Thus, for k = 2Lm /2J/q - p72 , there is some value of I

and some set of k inputs A” = [v1 , 
v

1 
, . . . ,v~, 3 c A’ such that

B” = 
~~~~~~~~~~~~~~~~~~~~~~~~ 

c B’ 
1 

Since G has the shifting

property, there must be k vertex-disjoint paths between A” and B”

But each such path must contain a vertex of C which is neither an

input nor an output. Hence 2’~/~~J 
- p > 2~ m/2J/q - p/2 , and

2 Lm/2J
2
/162 . 0

A shifting circuit is a Boolean circuit with ni primary inputs

X
l~

X
2~~•••~~

Xrn , zero or more auxiliary inputs, and m outputs Z1,Z2,...,Z

such that, for any k in the range 0 < k < m , there is some assignment

of the constants 0 , 1 to the auxiliary inputs so that output Z
j+k

computes the identity funct ion x~ , for 0 < i < rn-k • The Boolean

1t•~
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convolution o1 two Boolean vectors (x
1,x2,...,x )  and

• is the vector (z2,z.5
,...,z~~) given by Zk = 

~~~~~ k

Corollary 2. Any planar shifting circuit has at least Ln/2 J
2/162

vertices.

Proof. Any shifting circuit has the shifting property.

See [23,214]. 0

Corollary 3. Any planar circuit for computing Boolean convolution has

at least Lm/2 J
2/162 vertices.

Froof. A circuit for computing Boolean convolution is a shifting

circuit if we regard • ~ 
X as the primary inputs arid z

2, .. .,

as the outputs. 0

Corollary 14. Any planar circuit for computing the product of two m

bit binary integers has at least Lm/2 J
2/162 vertices.

Proof. A circuit for multiplying two rn-bit binary integers is a

shifting circuit. 0

The last result of this section is an Q(m14) lower bound on the

size of any planar circuit for multiplying two m x m  Boolean matrices.

We shall assume that the inputs are xjj Yjj for 1 < i,j < rn  and

the outputs are 
~~~ 

for 1 < i,j < in . The circuit computes

z = X~Y ~ where Z = (Z
jj

) ~ X = (xjj) ~ and Y = (y~~
) . We use

the following property of circuits for multiplying Boolean matrices,

17
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called the matrix concentration property [23,2 14]. For any k In the

range 1 < k < n2 , any set [x1~~ 1 < r < k) of k inputs from X

and any permutation a of the integers one through n , there exist

k vertex-disjoint paths from tx1~~ 1 r ~~k) to [Z
i G (j ) 

1 r j k3

Similarly, for any k in the range 1 < k < n , any set

I 1 < r < k3 of k inputs from Y , and any permutation a

of one through n , there exist k vertex-disjoint paths from

[Y~~~~~t l~~~
r
~~~k1 

to

Theorem 7. Any planar circuit G for multiplying two in x m  Boolean

matrices contains at least cm14 vertices, for some positive constant c

proof. This proof is somewhat involved, and we make no attempt to

maximize the constant factor. Suppose G contains n vertices, and

that m is even. Assign a cost of lJ(14m2) to each input x1. and

each input ~~~ , a cost of 1/(2m
2
) to each output z~~ ~ and a cost

of zero to every other vertex. There is a partition A , B, C of the

vertices of’ G such that neither A nor B has total cost exceeding

1/2 , no edge joins a vertex in A with a vertex in B , and C

contains no more than 2.~J~~J~ / (1 - ~~ = c1’Jn vertices. This

is a corollary of Theorem 1; see [114]. Without loss of generality,

suppose that B contains no fewer outputs than A , and that A

contains no fewer inputs Xj j  than inputs Yjj • Then B contains

at least (m
2 

- c1’~/ )/
2 outputs, which contribute at least

1/14 - c1’J~ /(14m
2
) to the cost of’ B • Thus inputs contribute at most

- c1 I~/ (14m2 ) to the cost of B , and B contains at most

18



- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. .

~~~~

m~ c1
-j~n im uts. A ~ont~ins at 1e~ st 2.ri - (~n c,~rn) 

- c1~J~ =

- 2c1’f~ 
inputs, of which at least m2/2 - c1~T~ are input s X~~

j

One of the fo1L~wLc~g cases must hold.

Case 1. A contains at least 3m2
/5 input s x~~ . Let 

~ 
be the

number of columns of X which contain at least 14m/7 elements of A

Then pm ‘- (m-p)(14m/7) 
~~ 

3m2/5 , and p 2 m/l5 . Let q be the number

of colurin s of Z which contain at least 14m/9 elements of B . Then

qm+ (m-q)(14m/q’ > m2/2 - c1./~/2 , and q > m/10 - 9c1f~ /(1
0m)

Let k = min[m/l5 , m/l0 - 9c1I~~/ ( lOm))  . Choose any k column s

of X , each of which contains at least 14m/7 elements of A . Match

each such column of X with a column of Z which contains at least

~in/~ elements of B • For each pair of matched columns x~~ ‘

select a set of 14m/7 + 14ni/ 9 - m = m/63 rows I such that x
1
. ~~~~

in A anr~ is in B . Such a selection gives a set of km/~3

elements in X fl A and a set of km/ 63 elements in Z fl B which must

be joined by iQn/63 vertex-disjoint paths, since G has the matrix

concentration property. Each such path must contain a vertex of C

Thus 1~n/63 < c~~\J~~ , which means either m2/(l5.63 ) < c1’J~ (i.e.,

(m
2
/(15.63c1

)) 2 < n ‘) or m/63(m/lO - 9c1’J~~/(lOm) ) < c1’~f~

(i.e., (m 1(9. 9c1)) . n ).

Case 2. A contains fewer than 3m
2
/5 inputs x

1~ 
. Then A cont ains

at least ~~~~ - 2c1~I~ inputs y1,~ . Let S be the set of m/2

columns of Z which contain the most elements in B

19



~ut ca~e 2a. S contains at least 3ni~/l0 elements in B . Let p

be the number of columns of X which contain at least 14m/9 elements

of A . Then pm+14 (m-p)m/9 � m~/2 - c1’~/~ , and p > ni/lO - 9c11 / (5m)

Let q be the number of columns of’ Z which contain at least li.m/7

elements of B . Then qm+ 14(m/2 - q)m/7 > 3m
2
/10 , and q 

~ m/3
0

A proof similar to that in Case 1 shows that ~ ~ 
cm14 for some positive

constant c

Subcase 2b. S contains fewer than 315
2
/10 elements in B . Then the

2
rn’P columns of Z not in S contain at least m /5 

- c1’~jn/2 elements

in B . Let q be the number of columns of Z not in S which contain

at least rn/b elements in B • Then pn÷ (nh/2 - q)(m/l0) ~‘ m~/5 
- c14~~/2 ,

and q > m/6 - 5c 14 / (9 m )  . If 0 > q ‘m/6 - 5c14~
’/ (9 m) , then

(3m2/(10c1) ) 2 
~
> n . Hence assume q > 0  . Then all columns in S

must contain at least m/10 elements in B , and. 2m/3 - 5c 1’I ~ / (9 m)

columns of Z must contain at least ni/b elements in B

Let p be the number of columns of’ y which contain at least m/25

elements of A . Then pm+ (ni-p)(m/25 ) ~~ ~~~~ - 2c1’~/~ , and

p > 3m/8 - 25c14~~/(12m)

For any input y
~~ 

€ A and integer 1 in the range -rt+]. < I < n-i ,

call Yjj~ 
I a match if 5i+1,j € B . By the previous computations,

there are at least 2rn/3 - 5c 1’~/ ~ / ( 9 m )  + 3m/8 - 25c1~/ /(12m) - m =

m/25 - 95cfI~ /(36m) = m/25 - c1~R/m columns i such that Y*j

contains m/25 elements of A and z*j 
contains m/lO elements

of B . Each such column produces m
2
/250 matches; thus the total

number of’ matches is at least m3/6250 - mc1V
’
~ /25O • Since there are

only 2in-l values of p , some value of I produces at least

20
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k = m2
/12,500 - c2’vc/500 matches. Since G has the matrix

concentration property, thi s set of matches corresponds to a set

of k elements in Y fl A and a aet of k el~ nenta in Z fl B which

must be joined. by k vertex-disjoint paths. Each such path must

contain a vertex in C . Thus k < c1~/ , ~thich means

m
14
/(12,500(c1 + c2/500))

2 < n

In all cases n ? cm
14 for some positive constant c . Ch oosing

the minimum C over all cases gives the theorem for even m . The

theorem for odd m follows ininediately. 0

The bounds in Theorems 5 - 7 and Corollaries 2 - 14 are tight to

within a constant factor. We leave the proof of this fact as an

exercise

2].
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6. Embedding of Data Structures.

Let = (v1,E1) and G2 = (v2,E2) be undirected. gx’aphs. An

embedding of’ in is a one-to-one map 0: V1 
-. V2 

. The worst-case

proximity of the embedding is max[d2(Ø(v),fl(w)) [v,w )€E~) , where

d2 (x,y) denotes the distance between x and y in . The average

proximity of the embedding is -~.j1. E [d2 (Ø(v),Ø( w))  [v,w) € E1)

These notions arise in the following context. Suppose we wish to

represent some kind of data structure by another kind. of data structure ,

in such a way that if’ two records are logically adjacent in the first

data structure, their representations are close together in the second.

We can model the data structures by undirected graphs, with vertices

denoting records and edges denoting logical adjacencies. The representation

problem is then a graph embedding problem in which we wish to minimize

worst-case or average proximity. See [5,13,19] for research in this area.

Theorem 8. Any planar graph with maximum degree k can be embedded in

a binary tree so that the average proximity is a constant depending only

upon k

Proof. Let G be an n-vertex planar graph. Embed G in a binary

tree T by using the following recursive procedure. If G has one

vertex v , let T be the tree of one vertex, the image of v

Otherwise, apply Corollary 1 to find a partition A , B , C of’ the

vertices of G . Let v be any vertex in C (if C is empty, let v

be any vertex). Embed the subgraph of’ G induced by AU C-[v) in a

binary tree T1 by applying the method recursively. Embed the subgraph

of G induced by B in a binary tree T2 by applying the method

22
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recursively. Let T consist of a root (th e image of v ) with two

children, the root of’ T1 and the root of T2 . Note that the tree

T constructed in this way has exactly ri vertices.

Let h(n) be the maximum depth of a tree T of n vertices

produced by this algorithm. Then

h (n)<9 if’ n < 9

h(n) < h(2n/3 + 2 ’~j ~~J ~ - 1) < h(29n/30) if’ n > 9

It follows that h(n) is 0(log n)

Let G = (V,E) be an n-vertex graph to which the algorithm is

applied, let G1 be the subgraph of G induced by A UC , and let

G2 
be the subgraph induced by B . If s(G) = E [d2(Ø(v),Ø(w)) (v,w) € E)  ,

then s(G) = 0 if n = 1 , and s(G) < s(G1) + s(G2) + k (CI h(n) if

n > 1 . This follows from the fact that any edge of G not in or

must be incident to a vertex of C

If s(n) is the maxiintun value of s(G) for any n-vertex graph G

then

s(l) = 0

s(n) < max[s(i) + s(n-i) + ck~/~ log n~ n/3 - 2V~~]~ < i < 2n/3 + 2~)~~c)

if’ n > 1 , for some positive con stant c . -

An inductive proof shows that s(n) is O(kn )

If G is a connected n-vertex graph embedded by the algorithm, then

G contains at least n-i edges, and the average proximity is 0(k)

If’ G is not connected, embedding each connected component separately

and combining the resulting trees arbitrarily achieves an 0(k) average

proximity. 0
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i i  i~ i i a t ural to ask whether any graph of bounded degree can b~

embedded in a binary tree with 0(1) average proximity. (Graphs ~r

unbounded dugree cannot be so embedded; the star of Figure 2 requires

~(log n) proximity.) Such is not the case, and in fact the property

• of beiii~ embeddabic in a binary tree with 0(1) average proximity is

closely related to the property of having a good separator.

To make thi s statement more precise, let S be a class of graphs.

The class has an f(n’ -separator theorem if there exist constants

1 , ~i 
- 0 such that the vertices of any n-vertex graph in S can

U :  j arti tioncd into three set s A , B , C such that (A ( ,  f B (  K ~r n

K ~f(n) , and no vertex in A is adjacent to any vertex in B

Let S be any class of graphs of bounded degree closed under the

subgraph relation (i.e., if € S and G1 is a subgrapti of G2 ,

then G1c S ).  Suppose S satisfies an ng(n)/(bog n)2 separator

theorem for some non-decreasing function g(n) . Using the idea in

the proof of Theorem 8, it is not hard to show that any graph in S

can be embedded in a binary tree ~iith 0(g(n)) average proximity.

Conversely, suppose any graph in a class S can be embedded in a binary

tree with 0(g(n)) average proximity. Then S satisfies an ng(n)/bog n

separator theorem. In particular, if S satisfies no o(n) -separator

theorem, then embedding the graphs of S in binary trees requires

~.(1og n)  average proximity. Erdös, Graham, and Szemer~di [7  1 have
shown the existence 01 a class of graphs of bounded degree having no

o(n) -separator theorem.



- .-~~—-— ____ _ ______ __ _-_-_-- .- 

7. The Post Office Problem.

In (U], I~ uth mentions the following problem: given n point:

(post offices) in the plane; determine, for any new point (house),

which post office it is nearest. Any preprocessing of the post offices

is allowed before the houses ars processed. Shamos [22] gives an

o(log n) -time, 0(n
2
) -space algorithm and an O((log n) 2 ) -time,

O(n log n) -space algorithm. See also [6]. Using Theorem 2 we can

give a solution which requires O(log n) time and 0(n) space, both

minimum if only binary decisions are allowed.

A polygon is a connected, open planar region bounded by a finite

set of line segments. (For convenience, we allow the point at infinity

to be an endpoint of a line segment; thus a line is a line segment.)

A polygon partition of the plane is a partition of the plane into

polygons and bounding line segments. A triangulation of’ the plane is

a polygon partition, all of whose polygons are bounded by three line

segments. A triangulation of a polygon partition is a refinement of

the partition into a triangulation . Two polygons in a polygon partition

are adjacent if their boundaries share a line segment. A set of polygons

is connected if any two polygons in the set are joined by a sequence of

adjacent polygons.

We shall solve the following triangle problem: given an n-triangle

triangulation and a point, determine which triangle or line segment of

the triangulation contains the point. The post office problem can be

reformulated as a triangle problem; the set of points closest to each

post office forms a polygon [22). We shall make use of the following

lemma, which we do not prove.
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Lemma 1. Any n-polygon partition has a refinement whose total number

of triangles is bounded by n plus the number of line segments bounding

non-triangles plus a constant (a line segment bounding two non-triangles

count s twice in this bound).

We shall build up a sequence of more and more complicated (but

more and more efficient) algorithms, the last of which is the desired one.

Theorems. Given an o(log n) -time, O(n1~~) -space algorithm for the

triangle problem with e > 0 , one can construct an O(log n) -time,

0(n
h
~
2
~~3) -space algorithm.

Proof. Let T be a triangulation and v be a vertex for which the

triangle problem is to be solved. By Theorem 2 there is a set of ~(~2/3)

triangles C0 whose removal from T leaves no connected set of more than

triangles.

Merge pairs of adjacent triangles which are not in C0 to form a

polygon partition P0 . P0 contains at most O(n21’3) line segments,

since each such line segment must be a bounding segment of a triangle

in T . Find a triangulation T0 of P0 with ~(~2/3) triangles,

which e~dsts by Lemma 1. Using the given algorithm, determine which

triangle or line segment of T0 contains v

It v is in some triangle of C0 , the problem is solved . Otherwise,

v Is Icnoi~i to be in some connected set C~ of triangles in T minus C0

Merge pairs of adjacent triangles which are not in C~ to form a polygon

partition P~ . since P~ contains at most O(n2~
’3) line segments,

there Is a triangulation T1 of P~ with 0(n2/3) triangles. Usin-~

the given aigoritlnn, determine which triangle or line segment of T1
ccntains v • This solves the problem.

26 
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The set s C~ , polygon partitions P1 , and triangu.lations T1

are all precomputed. Thus the time required by the algorithm is

o(log ~2/3) to discover which triangle of T0 contains v , plus

o(log ~2/3) to discover which triangle of T1 contains v . The

total time is thus 0(log n) . The total space is

~ o(~T1~~) < 0(n~
+2
~~3) D

Corollary 5. For any € > 0 there is an O(log n) -time, O(n
1
~~)

-space algorithm for the triangle problem.

Proof. Immediate from Theorem 9, using the O(log n) -time,

0(n
2
) -space algorithm of [22] as a starting point. 0

Theorem 10. There is am O(log n) -time, 0(n) -space solution to the

triangle problem.

Proof. Let T be a triangulation and v a vertex for which the triangle

problem is to be solved. If T contains no more than n0 triangles,

where n0 is a sufficiently large constant, determine which triangle

contains v by testing v against each line segment bounding a triangle

of T . Otherwise, let C be a set of o(n~”~ ) triangles whose removal

from T leaves no connected set of more than o(n~’~) triangles. Group

the connected sets of triangles in T minus C0 into sets C1 , each

containing within a constant factor of n~~~ triangles.

• Merge pairs of adjac ent triangles which are not in C0 to form

a polygon partition P~ . P0 contains at most 0(~~”~) line segments.

27 
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Find a triangulation T0 of’ P0 with 
Q(~3~”5) triangles. Using an

o(log n) -time, O(n71’6) -space algorithm, determine which triangle

of T0 contains v . 
-

If v is some triangle of C0 , 
the problem is solved. Otherwise

v is known to be in some set C~ . Merge pairs of adjacent triangles

which are not in C1 to form a polygon partition P~ . Each line

segment bounding a non-triangular polygon of P~ must bound a triangle

of’ C0 • Thus there is a triangulation T. of P1 containing

IC1V0(n~
’5) triangles. Apply the algorithm recursively to discover

which triangle of T1 contains v . This solves the problem.

The sets Ci , polygon partitions P~ , and triangulations T.

are all precomputed. If t(n) is the worst-case time required by the

algorithm on an n-triangle triangulation, then

t(n) = 0(1) if~ n <

t(n)  = t (o(n~”~ ) )+0( iog  n) otherwise .

An inductive proof shows that t(n ) is O(].og n) if n0 is chosen

sufficiently large .

If s(n) is the worst-case storage space required by the algorithm

on an n-triangle triangulation, then

s(t) 0(1) if n < n0 ,

s(n) < O(n7h10)+max( E  ~(~1÷~~(~
3/5)) 

~~~
n1 < n  and 

-

I#/5 14/5c1n < n 1 < c n  )

for some positive constants c1 and c
2 .

An inductive proof shows that s(n ) is 0(n ) .
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The preprocessing time required by the algorithm of Theorem 10

is 0(n log n) . See [22). We do not advocate this algorithm as a

practical one, but its existence suggests that there may be a practical

algorithm with an o(log n) time bound and an 0(n) space bound.

29
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8. Other Applications.

As illustrated in this paper, Theorem 1 and. its corollaries have

many interesting applications, and the paper does not exhaust them.

We have obtained two additional results which require fuller discussion

than is possible here. One is the application of Theorem 1 to Gaussian

elimination. George [8] has proposed an O(n log n) -space, o(n3/2) -time

method of carrying out Gaussian elimination on a system of equations whose

sparsity structure corresponds to a x square grid. We can

generalize his method so that it applies to any system of equations

whose sparsity structure corresponds to a planar or almost-planar graph .

Such systems arise in the solution of two-dimensional finite-element

problems [15]. We shall discuss this application in a subsequent paper;

we hope that it will prove of practical, as well as theoretical, value.

Another application involves the power of non-determinism in one-tape

Turing machines. We can prove that any non-deterministic t(n) -time-

bounded one-tape Turing machine can be simulated by a t(n)~ alternating

one-tape Turing machine with a constant number of’ alternations, where

~ < 1 is a suitable constant and t(n) satisfies certain reasonable

restrictions. Alternation generalizes the concept of non-determinism

and is discussed in [3,12]. Our result strengthens Paterson’s space-

efficient simulation of one-tape Turing machines [17].
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Figure 1. Elimination of a crossover by use of three
“exclusive or” gates. Reference [9] contains

a crossover circuit which uses only “and” and

“not”

S
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- Figure 2. A star.
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